Биология - Кембрийский взрыв - Возможные причины «взрыва»

09 февраля 2011


Оглавление:
1. Кембрийский взрыв
2. Источники информации
3. Палеонтологические свидетельства
4. Выводы
5. Возможные причины «взрыва»



Несмотря на то, что довольно сложные трехслойные животные существовали до Кембрия, эволюционное развитие в раннем Кембрии представляется исключительно быстрым. Предпринималось множество попыток объяснить причины подобного «взрывного» развития.

Изменения окружающей среды

Рост концентрации кислорода

Самая ранняя атмосфера Земли вообще не содержала свободного кислорода. Тот кислород, которым дышат современные животные — как содержащийся в воздухе, так и растворенный в воде — является продуктом миллиардов лет фотосинтеза, главным образом — микроорганизмов. Примерно 2,5 миллиарда лет назад концентрация кислорода в атмосфере резко возросла. До этого времени весь вырабатываемый микроорганизмами кислород полностью тратился на окисление элементов с высоким сродством к кислороду, таких как железо. Пока не произошло их полное связывание на суше и в верхних слоях океана, в атмосфере существовали лишь локальные «кислородные оазисы».

Нехватка кислорода могла длительное время препятствовать развитию крупных сложных организмов. Проблема состоит в том, что количество кислорода, которое животное может абсорбировать из окружающей среды, ограничено площадью поверхности. Количество же кислорода, требуемое для жизнедеятельности, определяется массой и объёмом организма, которые по мере увеличения размеров растут быстрее, чем площадь. Рост концентрации кислорода в воздухе и в воде мог ослаблять или вовсе устранять это ограничение.

Нужно отметить, что достаточное количество кислорода для существования крупных вендобионтов присутствовало уже в эдиакарский период. Однако дальнейший рост концентрации кислорода мог предоставить организмам дополнительную энергию для производства веществ, необходимых для развития принципиально более сложных структур тела, в том числе — используемых для хищничества и защиты от него.

Земля-снежок

Существуют многочисленные доказательства того, что в позднем неопротерозое Земля подвергалась глобальному оледенению, в ходе которого большая часть её была покрыта льдом, а температура поверхности была близка к точке замерзания даже на экваторе. Некоторые исследователи указывают, что это обстоятельство может быть тесно связано с кембрийским взрывом, поскольку самые ранние из известных ископаемых относятся к периоду вскоре после конца последнего полного оледенения.

Однако довольно трудно указать причинно-следственную связь таких катастроф с последующим ростом размеров и сложности организмов. Возможно, низкие температуры увеличивали концентрацию кислорода в океане — его растворимость в морской воде растет почти вдвое при падении температуры с 30 °C до 0 °C.

Флуктуации изотопного состава углерода

В отложениях на границе эдиакарского и кембрийского периодов наблюдается очень резкое снижение, а вслед за ним — необычно сильные колебания соотношения изотопов углерода C/C в течение всего раннего кембрия.

Многие ученые предполагали, что исходное падение связано с массовым вымиранием непосредственно перед началом кембрия.. Можно также предположить, что вымирание само стало следствием предшествовавшего распада клатратов метана. Широко известно, что эмиссия метана и последующее насыщение атмосферы диоксидом углерода вызывает глобальный парниковый эффект, сопровождающийся различными экологическими катастрофами. Подобная картина наблюдалась в Триасе, когда жизнь восстанавливалась после массового Пермского вымирания.

Однако довольно трудно объяснить, как массовое вымирание могло вызвать резкий рост таксономического и морфологического разнообразия. Хотя массовые вымирания, такие как пермское и мел-палеогеновое, приводили к последующему росту численности отдельных видов от несущественной до «доминирующей», однако в обоих случаях экологические ниши замещались хотя и другими, но столь же сложными организмами. При этом скачкоообразного роста таксономического или морфологического разнообразия в новой экосистеме не наблюдалось.

Ряд исследователей предполагал, что каждое кратковременное снижение доли C/C в раннем кембрии представляет высвобождение метана которое, благодаря вызванному им небольшому парниковому эффекту и повышению температуры, приводил к росту морфологического разнообразия. Но и эта гипотеза не объясняет резкого увеличения таксономического разнообразия в начале Кембрия.

Объяснения на основе развития организмов

В основе ряда теорий лежит та идея, что относительно малые изменения в способе, которым животные развиваются из эмбриона во взрослый организм, могут привести к резким изменениям формы тела.

Возникновение системы билатерального развития

Регуляторные Hox-гены включают и выключают «рабочие» гены в различных частях тела, и, тем самым, управляют формированием анатомической структуры организма. Очень схожие Hox-гены обнаруживаются в геноме всех животных — от стрекающих до людей. При этом млекопитающие имеют 4 набора Hox-генов, в то время как стрекающие обходятся единственным набором.

Hox-гены у различных групп животных столь схожи, что, к примеру, можно трансплантировать человеческий ген «формирования глаз» в эмбрион дрозофилы, что приведет к формированию глаза — но это будет глаз дрозофилы, благодаря активации соответствующих «рабочих» генов. Отсюда видно, что наличие сходного набора Hox-генов вовсе не означает анатомического сходства организмов. Поэтому возникновение подобной системы могло повлечь резкий рост разнообразия — как морфологического, так и таксономического.

Поскольку одни и те же Hox-гены управляют дифференциацией всех известных билатеральных организмов, эволюционные линии последних должны были разойтись до того, как у них начали образовываться какие-либо специализированные органы. Таким образом, «последний общий предок» всех билатеральных организмов должен был быть небольшим, анатомически простым и, вероятнее всего, подверженным полному разложению без сохранения в окаменелостях. Это обстоятельство делает его обнаружение крайне маловероятным. Однако целый ряд вендобионтов, возможно, имел билатеральное строение тела. Таким образом, подобная система развития могла возникнуть, по меньшей мере, за несколько десятков миллионов лет до Кембрийского взрыва. В этом случае для его объяснения необходимы какие-то дополнительные причины.

Небольшой рост сложности генома может иметь большие последствия

У большинства организмов, имеющих половое размножение, потомок получает примерно по 50 % своих генов от каждого родителя. Это означает, что даже небольшой рост сложности генома способен породить множество вариаций строения и формы тела. Большая часть биологической сложности, вероятно, возникает благодаря действию относительно простых правил на большом числе клеток, функционирующих как клеточные автоматы .

Колея развития

Некоторые ученые предполагают, что по мере усложнения организмов, на эволюционные изменения общего строения тела накладываются вторичные изменения в сторону лучшей специализации его сложившихся частей. Это снижает вероятность прохождения естественного отбора новыми классами организмов — из-за конкуренции с «усовершенствованными» предками. В итоге, по мере складывания общего строения, формируется «колея развития», а пространственная структура тела «замораживается». Соответственно, формирование новых классов происходит «легче» на ранних стадиях эволюции основных клад, а их дальнейшая эволюция идет на более низких таксономических уровнях. Впоследствии автор этой идеи указывал, что такое «замораживание» не является основным объяснением кембрийского взрыва.

Окаменелости, которые могли бы подтвердить эту идею, неоднозначны. Отмечено, что вариации организмов одного класса зачастую наиболее велики на самых первых стадиях развития клады. Например, некоторые кембрийские трилобиты сильно варьировали по количеству грудных сегментов, причём впоследствии подобное разнообразие существенно снизилось. Однако обнаружено, что образцы силурийских трилобитов обладают столь же высокой вариативностью строения, что и раннекембрийские. Исследователи предположили, что общее снижение разнообразия связано с экологическими или функциональными ограничениями. Например, можно ожидать меньшей вариативности числа сегментов после того, как у трилобитов сформировалось выпуклое строение тела, являющееся эффективным способом его защиты.

Экологические объяснения

Такие объяснения сосредоточены на взаимодействии между различными видами организмов. Некоторые из подобных гипотез имеют дело с изменениями пищевых цепей; другие рассматривают гонку вооружений между хищниками и жертвами, которая могла вызвать эволюцию жестких частей тела в раннем Кембрии; ещё какое-то число гипотез сосредоточено на более общих механизмах коэволюции.

«Гонка вооружений» между хищниками и жертвами

Хищничество по определению предполагает гибель жертвы, в силу чего оно становится сильнейшим фактором и ускорителем естественного отбора. Давление на жертвы в направлении лучшей адаптации должно быть более сильным, чем на хищников — поскольку, в отличие от жертвы, они имеют шанс сделать новую попытку.

Однако имеются свидетельства того, что хищничество присутствовало задолго до начала Кембрия. Поэтому маловероятно, что оно само по себе стало причиной Кембрийского взрыва, хотя и имело сильное влияние на анатомические формы возникших при этом организмов.

Появление фитофагов

Стэнли предположил, что появление 700 млн.лет назад простейших, «обгладывающих» микробные маты, крайне расширило пищевые цепи и должно было привести к росту разнообразия организмов. Однако, сегодня известно, что «обгладывание» возникло более 1 млрд лет назад, а угасание строматолитов началось около 1,25 млрд лет назад — задолго до «взрыва».

Рост размеров и разнообразия планктона

Геохимические наблюдения четко показывают, что общая масса планктона стала сравнима с нынешней уже в раннем Протерозое. Однако, до Кембрия планктон не вносил существенного вклада в питание глубоководных организмов, поскольку их тела были слишком малы для быстрого погружения на морское дно. Микроскопический планктон поедался другим планктоном или разрушался химическими процессами в верхних слоях моря задолго до проникновения в глубоководные слои, где мог бы стать пищей для нектона и бентоса.

В составе же ранних кембрийских ископаемых был обнаружен мезозоопланктон, который мог отфильтровывать микроскопический планктон. Новый мезозоопланктон мог служить источником останков, а также выделять экскременты в форме капсул, достаточно крупных для быстрого погружения — они могли быть пищей для нектона и бентоса, вызывая рост их размеров и разнообразия. Если же частицы органики достигали морского дна, в результате последующего захоронения они должны были повышать концентрацию кислорода в воде  при одновременном снижении концентрации свободного углерода. Другими словами, появление мезозоопланктона обогатило глубокие участки океана как пищей, так и кислородом, и, тем самым, сделало возможным появление и эволюцию более крупных и разнообразных обитателей морских глубин.

Наконец, возникновение среди мезозоопланктона фитофагов могло сформировать дополнительную экологическую нишу для более крупных мезозоопланктонных хищников, чьи тела, погружаясь в море, вели к дальнейшему его обогащению пищей и кислородом. Возможно, первыми хищниками среди мезозоопланктона были личинки донных животных, чья дальнейшая эволюция стала результатом общего роста хищничества в морях эдиакарского периода.

Множество пустых ниш

Джеймс Валентайн в нескольких работах сделал следующие предположения: резкие изменения в строении тела являются «затруднительными»; изменения имеют гораздо больше шансов на существование, если они встречают слабую конкуренцию за ту экологическую нишу, на которую они нацелены. Последнее необходимо, чтобы новый тип организмов имел достаточно времени для адаптации к своей новой роли.

Это обстоятельство должно приводить к тому, что реализация основных эволюционных изменений гораздо более вероятна на начальных стадиях формирования экосистемы — из-за того, что последующая диверсификация заполняет почти все экологические ниши. В дальнейшем, несмотря на то, что новые типы организмов продолжают возникать, нехватка пустых ниш препятствует их распространению в экосистеме.

Модель Валентайна хорошо объясняет факт уникальности Кембрийского взрыва — почему он случился только один раз и почему его длительность была ограничена.



Просмотров: 13359


<<< Девонское вымирание
Маммализация териодонтов >>>