Биология - Грибы - Генетика и наследственность

08 февраля 2011


Оглавление:
1. Грибы
2. Этимология
3. Происхождение и эволюция
4. Строение
5. Генетика и наследственность
6. Питание
7. Размножение
8. Классификация
9. Ископаемые грибы
10. Роль в биоценозе
11. Значение для человека



Геном

Геном грибов, как и у всех эукариот, состоит из ядерных и митохондриальных ДНК-содержащих структур, к элементам, отвечающим за наследственность относят также плазмиды и вирусы.

По размеру и строению ядерного генома настоящие грибы занимают как бы промежуточное положение между прокариотами и остальными эукариотами, в среднем размер генома грибов на 2 порядка меньше, чем у высших растений. Число хромосом колеблется от 2 до 28, у большинства видов — от 10 до 12. Размер хромосом у грибов также значительно меньше, чем у других эукариот. Так, у дрожжей Saccharomyces cerevisiae имеется 15 хромосом, но каждая из них примерно в 5 раз меньше, чем «хромосома» бактерии Escherichia coli и всего в 4 раза превышает размер ДНК бактериофагов группы T. Количество ДНК на гаплоидный геном составляет от 0,015 пг до 8,3 пг, то есть колеблется более, чем в 500 раз. По числу нуклеотидных пар русск. наименьший геном имеет Eremothecium gossypii, поражающий хлопчатник. Среди эукариот меньший размер генома известен только у некоторых водорослей, не живущих свободно, а являющихся эндосимбионтами. Для базидиомицетов характерные размеры генома составляют от 0,023 пг у вёшенки обыкновенной до 0,1 пг у плютея оленьего

Характерной особенностью, обнаруженной у некоторых видов грибов, является наличие мелких, так называемых B-хромосом русск.. В отличие от «нормальных» хромосом, число их непостоянно и может быть различным у штаммов одного и того же вида. Наличие B-хромосом не обязательно для обеспечения жизнедеятельности клетки, но они выполняют функцию адаптации к внешним условиям. Например, у фитопатогенных видов эти хромосомы контролируют факторы вирулентности и штаммы, лишённые их, способны только к сапротрофному питанию.

Промежуточное положение между бактериями и высшими эукариотами грибы занимают и по структуре ядерного генома. Для эукариот характерно наличие множества повторяющихся последовательностей ДНК, на долю которых приходится 10—50 и более процентов от всего генома, что отчасти и обусловливает большой размер эукариотического генома. У бактерий повторяющиеся последовательности почти отсутствуют, а у грибов составляют обычно 10—15 % генома. Известны лишь единичные исключения, например, зигомицет Phycomyces blackesleeanus, у которого геном состоит на 45 % из повторяющихся последовательностей. Грибоподобные организмы, не относящиеся к царству настоящих грибов, по размерам повторяющихся последовательностей сходны с высшими эукариотами.

Структура грибных генов аналогична таковой у других эукариот — гены состоят из экзонов и интронов, интроны однако у грибов также отличаются меньшими размерами. Средняя длина их составляет 85 н. п., а размах значений длины — от 36 до 250 н. п. Благодаря такой структуре генома и самих генов, у грибов больший процент ДНК участвует в кодировании белков.

Митохндриальный геном грибов представлен кольцевыми молекулами мтДНК, размер которых варьирует от приблизительно 20 000 н. п. до более, чем 100 000 н. п. Эта ДНК содержит как некодирующие участки, так и гены, кодирующие рибосомные и транспортные рибонуклеиновые кислоты, а также такие ферменты, как цитохромоксидазы, АТФазы, являющиеся необходимыми компонентами дыхательной цепи. Организмом с хорошо изученным митохондриальным геномом являются дрожжи Saccharomyces cerevisiae. У них имеется 20—70 молекул мтДНК, упакованных в один или несколько нуклеоидов, что составляет 5—30 % от всего генома. Размер мтДНК у этих дрожжей составляет 85 779 н. п., она содержит значительную долю некодирующих участков, 2 гена рРНК, 25 генов тРНК и 26 генов, кодирующих ферменты окислительного фосфорилирования. Мутации в митохондриальных генах часто оказываются летальными или приводят к снижению скорости роста, дыхательной активности грибов.

Плазмиды у эукариот наиболее характерны для царства грибов. Предполагают, что наличие их связано со спецификой физиологии и среды обитания грибов и даёт им преимущества в прорастании и распространении.

Грибные плазмиды могут находится в ядре, митохондриях или в цитоплазме и представляют собой линейные или кольцевые молекулы ДНК. Большинство плазмид принадлежат митохондриям и обычно их наличие не проявляется в фенотипе, однако известны плазмиды, связанные с патогенностью штаммов, так называемые killer-плазмиды, и плазмиды, вызывающие старение колонии. Killer-плазмиды отвечают за синтез определённых токсинов и одновременно за устойчивость к этим токсинам, то есть клетки, имеющие такие плазмиды убивают клетки, не имеющие их.

Плазмиды грибов разделяют на три класса в зависимости от структуры молекулы и наличия гомологии с мтДНК:

  1. линейные, не имеющие гомологичных последовательностей с митохондриальным геномом;
  2. циклические, не имеющие гомологий с мтДНК — могут вызывать синдром старения;
  3. циклические, имеющие гомологии с мтДНК — вызывают синдром старения.

Плазмиды могут передаваться через анастомозы мицелия и через конидии, также могут являться не видоспецифичными, что делает их идеальными для использования в качестве векторов переноса в генетической инженерии.

Вирусы грибов содержат двухцепочечную молекулу РНК и вызывают различные симптомы: снижение или повышение вирулентности у патогенных видов, дегенерацию мицелия и плодовых тел, изменение окраски, подавление спороношения. Некапсидированные, то есть не покрытые белковыми оболочками вирусные РНК передаются через анастомозы независимо от митохондрий. Вирусные заболевания могут наносить ущерб грибоводческим предприятиям, например, вызывают побурение плодовых тел шампиньона, изменение окраски у зимнего опёнка, что снижает его коммерческую ценность. Вирусы, вызывающие гиповирулентность грибов-патогенов могут использоваться для контроля над заболеваниями растений.

Особенности деления ядра

Митоз и мейоз у грибов отличаются рядом специфических особенностей. У большинства видов грибов деление ядра происходит по закрытому типу, то есть с сохранением ядерной оболочки. Центриоли имеются лишь у псевдогрибов и некоторых грибов, имеющих жгутиковые стадии, у остальных видов веретено деления формируется более просто устроенными белковыми структурами — полярными тельцами веретена русск.. Фазы митоза чередуются быстро, а хромосомы имеют небольшие размеры; в сочетании эти факторы затрудняют микроскопическое исследование, поэтому ранее считалось, что деление ядер у грибов происходит амитотически. Телофаза митоза происходит несинхронно, в результате чего могут образовываться гетероплоидные дочерние ядра, то есть содержащие неравное число хромосом. Чаще всего при гетероплоидии наблюдается различное число B-хромосом. Митоз и образование новых клеток у мицелиальных грибов происходят независимо друг от друга — ядра перемещаются в дочернюю клетку уже после отделения её перегородкой от материнской.

Рекомбинации

Рекомбинация генетического материала у грибов может происходить не только в мейозе, но и в митозе.

При мейотической, или половой рекомбинации у высших грибов диплоидное ядро без периода покоя делится редукционно с образованием тетрады — четырёх гаплоидных ядер, после чего может произойти ещё одно деление и образуется октада. Затем ядра тетрады или октады отделяются оболочками и образуют мейоспоры. Исследования фенотипа непосредственных продуктов мейоза называют тетрадным анализом. Этот метод позволяет определить истинное расщепление признаков, а не статистически достоверное, как в «обычных» генетических экспериментах, подобных опытам Г. Менделя. Тетрадный анализ широко применяется на модельных аскомицетах, у которых споры в асках располагаются в строгом порядке, обусловленном постоянной ориентацией веретена деления при мейозе и последующем митозе. Применение тетрадного анализа позволяет получить ценную информацию о сцеплении генов, механизме рекомбинации и др.

Митотическая рекомбинация происходит путём слияния гаплоидных ядер в многоядерных вегетативных клетках, при слиянии генетически разнородных ядер образуется гетерозиготный диплоид. В природных условиях вероятность образования такой гетерозиготы высока, поскольку мицелий вырастает из множества генетически неоднородных спор. Впоследствии при митотическом делении такого ядра происходит рекомбинация. Впервые это явление наблюдалось в 1952 году английским микологом Дж. Ропером, а итальянский генетик Г. Понтекорво русск. назвал его парасексуальным процессом. Особое значение парасексуальный процесс имеет для «несовершенных грибов», у которых половая рекомбинация отсутствует или образование совершенных стадий происходит очень редко.

Ядерные жизненные циклы

Царство грибов характеризуется разнообразием жизненных циклов и вариантов ядерного статуса.

Признаки, определяющие ядерный статус грибов
Число ядер в клетке одно — монокарион два — дикарион много — мультикарион
Состав ядер генетически однородный — гомокарион
разнородный — гетерокарион
Плоидность 1n — гаплоиды
2n — диплоиды
>2n — полиплоиды
Состав хромосом гомозиготы
гетерозиготы

Ядерный статус определяется комбинацией признаков, представленных в данной таблице. Например, дикарион и мультикарион могут быть гомокарионом или гетерокарионом, ядра в моно- ди- и мультикарионе — иметь различную плоидность, ди- и полиплоидные ядра быть гомозиготными или гетерозиготными.

Схема диплоидного жизненного цикла

У различных таксономических групп грибов выделяют до 7 типов жизненного цикла.

  1. Бесполый цикл характерен для нескольких десятков тысяч видов аскомицетов и базидиомицетов, утративших половую стадию — так называемых дейтеромицетов. Мейоз у этой группы отсутствует и плоидность неизвестна, рекомбинации происходят в парасексуальном цикле.
  2. Гаплоидный цикл известен у зигомицетов, многих хитридиомицетов. Мицелий содержит множество гаплоидных ядер, которые делятся митотически по мере роста гиф. Диплоидная стадия представлена только зиготой, которая после периода покоя делится мейотически и даёт начало новому гаплоидному поколению.
  3. Гаплоидный цикл с ограниченным дикарионом характерен для большинства аскомицетов, мицелий их также чаще всего бывает гаплоидный мультикариотический. Гаметы или гаметангии вначале сливаются цитоплазмами без слияния ядер и прорастают дикариотическими гифами, называемыми также аскогенными. На концах аскогенных гиф формируются сумки, в которых происходит кариогамия, затем без периода покоя диплоидное ядро делится мейозом и даёт гаплоидные аскоспоры. Скрытая изменчивость у этих грибов отсутствует, так как все рецессивные мутации сразу проявляются в фенотипе.
  4. Гаплоидно-дикариотический цикл встречается у многих базидиомицетов — гименомицетов, гастеромицетов, ржавчинных грибов. Он сходен с предыдущим, но характеризуется длительной стадией дикариона, которая чаще всего бывает доминирующей. Стадия первичного гаплоидного мицелия также может быть длительной.
  5. Дикариотический цикл характерен для ограниченной группы базидиомицетов — головнёвых грибов. Гаплоидная фаза у них представлена базидиоспорами и прорастающими из них одноядерными споридиями, которые способны расти на питательной среде. Сливаясь попарно, споридии формируют дикариотический мицелий.
  6. Гаплоидно-диплоидный цикл встречается у низших водных грибов — бластокладиевых, хитридиомицетов. Диплоидный спорофит образует зооспоры, прорастающие в такие же диплоидные спорофиты и мейоспорангии, дающие начало гаплоидному половому поколению — гаметофитам. Такой тип жизненного цикла характерен для многих водорослей, а у грибов встречается редко.
  7. Диплоидный цикл известен у дрожжей Saccharomyces cerevisiae и других сахаромицетов, кроме настоящих грибов характерен также для оомицетов, например, Phytophthora infestans. Преобладает диплоидная стадия почкующихся клеток, ядра которых в определённых условиях делятся мейозом и формируют гаплоидные аскоспоры. Клетки гаплоидного поколения также способны почковаться, но чаще диплоидизируются слиянием, то есть выполняют функцию гамет. Рецессивные мутации у этих грибов, как и у высших эукариот, могут сохраняться скрыто и появляться в потомстве после рекомбинаций.

Гетерокариоз и вегетативная несовместимость

Одна из характерных особенностей грибов — явление гетерокариоза, то есть наличие в одной клетке двух и более генетически разнородных ядер. Это обусловлено 1) возможностью наличия в клетке более, чем одного ядра; 2) возможностью миграции ядер между клетками и 3) возможностью обмена ядрами через анастомозы гиф, принадлежащих разным штаммам. Гетерокариотическое состояние может возникать и в результате мутаций ядер исходного гомокариона. Выделяют два основных типа гетерокариоза:

  • тип Neurospora — клетки мультикариотичны, ядра свободно мигрируют внутри них и между ними;
  • тип Verticillum — клетки в норме монокариотичны, ядра не мигрируют между клетками, в результате образуются мозаичные колонии.

Гетерокариоз выполняет у гаплоидных организмов ту же функцию, что и гетерозиготность у диплоидных: маскировку рецессивных признаков доминантными. Однако, если у диплоидов соотношение аллелей всегда постоянно и равно 1:1, то при гетерокариозе это соотношение может легко варьировать путём изменения количества ядер в клетке и позволяет быстро адаптироваться к изменениям внешней среды.

по Р. Станиеру:

Гетерокариоз — гибкий механизм физиологической адаптации, суть которого заключается в количественных изменениях качественно фиксированного множественного генома.

Широко распространено у различных таксономических групп грибов явление вегетативной, или гетрокарионной несовместимости — невозможности слияния мицелиев определённых штаммов, что препятствует образованию гетерокарионов. Несовместимость проявляется в том, что анастомозы не образуются или гифы погибают после слияния, в последнем случае на границе контакта между двумя колониями образуется полоса из вакуолизированных отмерших клеток — барраж. По механизму генного контроля вегетативная несовместимость является противоположной половой совместимости, для которой необходимо наличие гетероаллельности по генам совместимости. Вегетативная несовместимость, напротив, проявляется если штаммы имеют различные гены, отвечающие за совместимость, поэтому немецкий генетик К. Эссер назвал вегетативную несовместимость гетерогенной, а половую — гомогенной. Гены, отвечающие за гетерокарионную совместимость называют het-генами. Природные штаммы часто различаются по нескольким het-генам, в результате чего может существовать большое число взаимно несовместимых групп.

Предполагается, что вегетативная несовместимость выполняет важную экологическую роль — защищает колонии от заражения через анастомозы плазмидами и вирусами.



Просмотров: 47301


<<< Гриб
Бластокладиевые >>>