Биология - Оксид азота(II) - Химические свойства

25 июня 2011


Оглавление:
1. Оксид азота(II)
2. Химические свойства
3. Смотри также



При комнатной температуре и атмосферном давлении происходит окисление NO кислородом воздуха:

2NO + O2 → 2NO2

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя:

2NO + Cl2 → 2NOCl.

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

2SO2 + 2NO → 2SO3 + N2↑.

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.

Физиологическое действие

Оксид азота в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках - ядра, в некоторых из ядер, в свою очередь, заметны ядрышки.

Как и все оксиды азота, NO — токсичен, при вдыхании поражает дыхательные пути.

За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO действует как посредник в передаче клеточных сигналов внутри клетки и между клетками. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение, предотвращает агрегацию тромбоцитов и адгезию нейрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как эссенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания, сахарный диабет, импотенция и др.

Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO2 и каротиноидами. У животных синтез осуществляют семейство NO-синтаз. NOS-ферменты — члены гем-содержащего суперсемейства ферментов, названных монооксигеназами. В зависимости от структуры и функций, NOS могут быть разделены на три группы: эндотелиальные, нейрональные и индуцибельные. В активный центр любой из NO-синтаз входит железопорфириновый комплекс, содержащий аксиально координированный цистеин или метионин. Хотя все изоформы NOS катализируют образование NO, они являются продуктами различных генов, каждая из них имеет свои особенности как в механизмах действия и локализации, так и в биологическом значении для организма. Поэтому указанные изоформы принято также подразделять на конститутивную и индуцибельную синтазы оксида азота.

cNOS постоянно находится в цитоплазме, зависит от концентрации ионов кальция и кальмодулина и способствует выделению небольшого количества NO на короткий период в ответ на стимуляцию рецепторов. Индуцибельная NOS появляется в клетках только после индукции их бактериальными эндотоксинами и некоторыми медиаторами воспаления, такими как гамма-интерферон, фактор некроза опухоли и др. Количество NO, образующегося под влиянием iNOS, может варьировать и достигать больших количеств. При этом продукция NO сохраняется длительнее.

Характерной особенностью NO является способность быстро диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко проникать в клетки-мишени. Внутри клетки он активирует одни и ингибирует другие ферменты, участвуя в регуляции клеточных функций и фактически действуя как локальная сигнальная молекула. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой — давать провоспалительный эффект.

Оксид азота способен инициировать образование кровеносных сосудов. В случае инфаркта миокарда оксид азота играет положительную роль, так как индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития апоптоза. В экспериментах наблюдалось дезаминирование дезоксинуклеозидов, дезоксинуклеотидов и неповрежденной ДНК при воздействии раствора, насыщенного NO. Этот процесс ответствен за повышение чувствительности клеток к алкилирующим агентам и ионизирующему излучению, что используется в антираковой терапии.

Клиренс NO происходит путем образования нитритов и нитратов и составляет в среднем не более 5 секунд. В клиренс могут быть вовлечены промежуточные ступени, связанные со взаимодействием с супероксидом или с гемоглобином с образованием пероксинитрита. Оксид азота может быть восстановлен NO-редуктазой — ферментом, тесно связанным с NO-синтазой.

В 1998 году Роберту Ферчготту, Луису Игнарро и Фериду Мураду была присуждена Нобелевская премия по физиологии и медицине «За открытие роли оксида азота как сигнальной молекулы в регуляции сердечно-сосудистой системы».



Просмотров: 13618


<<< Фосфатидилинозитол-3-фосфат